If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2-12p-35=0
a = 1; b = -12; c = -35;
Δ = b2-4ac
Δ = -122-4·1·(-35)
Δ = 284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{284}=\sqrt{4*71}=\sqrt{4}*\sqrt{71}=2\sqrt{71}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{71}}{2*1}=\frac{12-2\sqrt{71}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{71}}{2*1}=\frac{12+2\sqrt{71}}{2} $
| 6-2(2t-7)=-12 | | 2x+20=323x-10 | | 5x+6=-24, | | 450=x-(.2)x | | 35t+45t=150 | | 2(2b-2)+6=-10 | | -3.1x+4.3=-1.9x+3.7 | | 6x-12=64x+3 | | 3(y-3)=4y-9 | | 10x=4x+90 | | (3x)3/4=27 | | r^2-77=4 | | 2=20/(x^2=2) | | (3x)3-4=27 | | 18x=5/9 | | 4/5y-7/2=-8/3 | | 6=-4x=-30 | | {x+4}/3=2 | | 3/5+x/2=1/10 | | -(3x-4)+2(x+3)=-2x+2(x+14) | | 2x+1/8=1/16 | | 1x+3=7, | | 3.5w=31 | | -20=e+3e | | 5t^2+2t-32=0 | | 10(2x-4)+5(x+5)=-5(-x-9) | | -3x+9=33, | | -6=-4c-6c | | 2*x^2-3=-5x | | (-2/3)(9x=15)-2x=34 | | x=2x=4x=28 | | -4x^2-15+4=0 |